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In a generalization of Guinier's approximation, the scattering functions in small angle scattering are 
represented by series of Hermite orthonormal functions. This allows a general solution of the slit 
height problem in terms of a simple coefficient formalism. To correct the slit width resolution error and 
the polychromatic effect on the basis of Hermite functions, orthonormal systems are constructed which 
lead to recurrence relations for the coefficients appearing in the solution. The methods have been 
numerically tested for various types of functions. 

Introduction 

The principal object of small angle scattering experi- 
ments is to get evidence of spatia ! correlations between 
the scattering centres of the physical system. Indirectly, 
such evidence may be found by comparison of the ex- 
perimental distributions of scattered intensity with 
model distributions calculated from hypothetical con- 
figurations. This procedure requires a certain a priori 
knowledge of the spatial structure of the physical 
system. 

The most general form of evidence from elastic small 
angle scattering is contained in the correlation func- 
tion g(r) represented by the Fourier transform of the 
scattering function, S(x). If we restrict considerations 
to isotropic systems, the characteristic scattering func- 
tion S(x) depends only upon the absolute value of the 
scattering vector x = 4n2 -1 sin (0/2) (2 = wavelength, 
0=scattering angle). If the correlation function is to 
be completely and exactly determined, the accurate 
shape of S(x) in the whole range 0 < x < oo must be 
available. Unfortunately, measurements of intensity 
distributions only give limited information about S(x) 
on a finite range of x. In order to obtain sufficient 
scattered intensity the experimental conditions are usu- 
ally far from the ideal case of a point-like primary spot 
produced by strictly monochromatic radiation. Wave- 
length distribution in the primary beam and finite 
angular divergence are the origins of resolution errors 
in the scattering distributions. Compared with the true 
shape of the scattering function S(x) the experimental 
intensity distribution may be substantially distorted so 
that no direct evidence of S(x) and of the correlations 
within the scattering system can be obtained. We de- 
scribe the detector plane by a coordinate system (h, u), 
where h may be the reduced angular variable, h =  
2p.  sin (0/2) (p is a scaling parameter determined by 
the experimental design), and u is defined as perpen- 
dicular to h. We now postulate the wavelength distri- 
bution to be independent of the point (h, u) in the pri- 
mary spot, and the intensity distribution in the hori- 
zontal direction along h to be independent of the dis- 
tribution along u, and vice versa; thus the primary 

intensity is considered to be separable with regard to 
the wave number k and the variables h and u. If iB(h) 
and in(u) are the so-called slit width and slit height 
weighting functions, and z(k) is the primary 'momen- 
tum' distribution, where k =2n(p2) -a, the relation: 

io(h,u,k)=iB(h)" iH(u)" z(k) 

may be assumed to hold. (The distributions may be 
taken to be normalized.) Then the scattered intensity 
distribution in the detector plane will be proportional 
to the following expression: 

V(h)= l l l iB(h')i~(u)z(k) . S(k . ~(h-h')2+u z) 

× dkdudh' . (1) 

Thus the resolution errors are mathematically repre- 
sented by three distinct integral equations. The poly- 
chromatic effect is described by the equation: 

S ~-(h) = z(k)- S(k .h )dk .  (2) 
o 

Assuming a slit arrangement that behaves according 
to (1), the originally two-dimensional convolution 
problem of the geometrical distortions can be separated 
into the slit width effect, 

f iB(h'). G(h-h')dh',  (3) V(h)= 

and the slit height effect: 

a(h) = I i~(u) " S~(~h~ d- u2)au " (4) 

Small angle scattering means scattering into an angular 
region where the approximation h=pO holds; say 
0 < 10 -1 radian. Thus the ranges of 0 and x may for- 
mally be extended to - oo < 0, x < oo. The integration 
boundaries in (3) and (4) are then defined by - o o  and 
-t- o o .  

In various ways, many authors have dealt with these 
resolution errors. A survey of the literature can be 
found in the thesis of Hossfeld (1967). Contrary to the 
X-ray scattering situation, the smearing effect due to 
polychromatic radiation can be very important in 
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neutron small angle scattering (Armbruster, Maier, 
Scherm, Schmatz & Springer, 1966). Luzzati (1957) 
showed that by substituting h = exp (t) and k = exp (v), 
equation (2) is transformed into a convolution type 
equation equivalent to (3). This type of equation can 
be solved in principle by a Fourier transformation. 
However, we have not been able to find an explicit 
example of wavelength correction in the literature. 

Provided that a slit arrangement is used, the slit 
width effect is often negligible compared with the altera- 
tion of scattering functions as a result of the slit height. 
Expansion of (3) by Fourier transforms always greatly 
magnifies the errors in the data, so this is not ordinarily 
a practical method. For slit width correction Taylor & 
Schmidt (1967) recently used the method of Sauder 
(1966), applying a Taylor series expansion, but this 
method needs at least double differentiation of the ex- 
perimental data. Lake (1967) developed an iterative 
computer method starting with a trial function for 
simultaneous correction of slit-width and slit-height 
effects with arbitrary weighting functions. 

Closed analytic solutions of the slit height equation 
were found by Guinier & Fournet (1947) and DuMond 
(1947) for infinite slit height, and by Kratky, Porod & 
Kahovec (1951) for the Gaussian type of slit height 
function. On these solutions almost all numerical 
methods have been based. Mazur & Wims (1966) 
recently derived a formal solution for arbitrary slit 
height functions. However, this method seems to be 
too unwieldy to be very useful in practice, and it has 
not, as yet, been numerically tested. So, excepting 
Lake's simultaneous iteration method, the convergence 
of which strongly depends upon the strength of the 
distortion effects, there is no practical method gen- 
erally applicable to error correction in small angle scat- 
tering. 

Representation by Hermite functions 

The objective of any unsmearing operation is the ap- 
propriate transformation of a measured distribution 
into a scattering function S(x). The result always has 
some degree of uncertainty, which depends upon the 
transformation of the statistical errors of the measured 
function and also upon our knowledge of the resolu- 
tion functions. 

An adequate method for handling distortion prob- 
lems should satisfy the following requirements: (1) For 
the discrete set of experimental data [we neglect con- 
tinuous recording methods which imply additional dis- 
tortions (Hossfeld, 1966)] an appropriate representa- 
tion should be found which accords with the actual 
functional character of scattering distributions. The 
information given by discrete sampling points should 
transform to a reduced number of variables now repre- 
senting some functional distribution. A representation 
must take into account the possible functional types 
in small angle scattering, and should be simply Fourier 
transformed. (2) The detail of such a representation must 
be consistent with the statistics of the data, bearing in 

mind the use of least-squares fitting methods. (3) Dis- 
tortion corrections based upon such a representation 
must be subject to a discussion of error propagation. 
(4) Correction methods should be suitable for computers. 

These requirements are met by series expansions 
of the complete orthonormal system of Hermite func- 
tions: 

(x~ (~ ~,(2n+~)X2v+s~ exp ( -  XZ/2) (5) ~bt2n+s = u2v+s , • 
v = 0  

n = 0 , 1 , 2 , . . .  ; s = 0  or 1, where the b~ are character- 
istic coefficients (Szeg6, 1959). Hermite functions are 
invariant against Fourier transformation (Titchmarsh, 
1948). Thus the correlation function g(r) is easily ex- 
pressed in terms of the expansion coefficients of the 
scattering function S(x) (Hossfeld, 1967). Since the 
zero order Hermite function is a Gaussian, the Hermite 
expansion is equivalent to an expansion for perturba- 
tions of Guinier's approximation. Because of its com- 
pleteness, the representation of scattering distributions 
by finite sums of Hermite functions can be made con- 
sistent with statistics according to the method of least 
squares. All experimental information is transformed 
into discrete expansion coefficients and correction 
methods on this basis will reduce to simple coefficient 
algebra. 

Theory 

In the following we give a dosed treatment of the reso- 
lution errors by means of Hermite functions. At first 
we consider the slit height effect described by (4). We 
want to find the solution function o~(h) as a series ex- 
pansion of Hermite functions. Therefore G(h) may be 
expanded to an index N according to the experimental 
accuracy of the data: 

N 

G(h)= Z g2n~2n(h), 
n = 0  

Since all problems in isotropic small angle scattering 
are symmetrical, only Hermite functions of even order 
need to be considered. If we insert the postulated series 
expansion 

N 

~-(h)= Z Czn~Uzn(h) (7) 
n = 0  

into (4) we are able to separate.the variables h and u. 
Using the explicit formula (5) for the Hermite func- 
tions we find after interchanging summation and inte- 
gration: 

N N 

G(h)= Z ( Z C 2 .  f b(22on)Av, K)h 2K . exp ( -h2/2) ,  (8) 
K = 0  n=K v----K 

where 

Av, K= ( K)  i~_ooiH(u) . u2(v-K) exp (--uZ/2) du . (9) 
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On the other hand we get from (6) 
N N 

G(h)= X ( 27 gznb(z2~))h zK . exp ( -h2/2) .  
K=0 n=K 

(10) 

Comparison of equal powers of h in (8) and (10) yields 
a recurrence formula for the coefficients: 

C2~v- g2~r . 
AN,  N 

1 u 
( X g2nb(2~. ) C2~: = b(~r) AK, K . = r  

N 
- 27 Czn ~ bi2~'°Av, K) (11) 

n=K+ 1 v=K 

for K = N - 1 ,  N - 2 ,  . . . ,  0. Using (7), the slit height 
corrected scattering distribution ~-(h) may be calcu- 
lated. The special shape of the slit height function in(u) 
enters only into the triangular matrix Av, K, a fact em- 
phasizing the generality of this correction method. Of 
course, this way of solving type (4) equations can be 
extended to other problems, provided that the coupled 
functions satisfy certain integrability conditions con- 
cerning the expansion in Hermite polynomials. 

A correction method for the slit width effect which 
finally arrives at a set of coefficients gzn of an Hermite 
series expansion will be very useful in enabling an 
immediate slit height correction to be made according 
to (1 1). (The 'folding' theorem cannot reasonably be 
applied to this end.) If we postulate the solution G(h) 
of (3) to be expanded in an Hermite series with appro- 
priate convergence properties: 

N 
G(h)= 27 gzngzn(h), (12) 

n----0 

we find after inserting (12) into (3) 
N 

V(h) = 27 g2n~2n(h), (1 3) 
n=O 

where ~2n(h) are the Hermite functions ~2n(h) folded 
with iB(h). These new functions are no longer orthog- 
onal, but they remain linearly independent. Thus we 
can apply Schmidt's method (Morse & Feshbach, 1953) 
to orthonormalize the ~2n(h), constructing step-wise an 
orthonormal system ~02n(h), n = 0 , 1 , . . .  The ~2n are 
related to the ~02~ by a triangular matrix T 

~zn(h)= Z T2n,2m . ~0zm(h), (14) 
m = 0  

where 

T2n, zm= l~_ ~2n(h) . q~2m(h)dh , m < n  (15) 

Then (13) yields 
N N 

V(h)= 27 ( 27 g2nTzn, zm). ~02m(h) • (16) 
m ~--~- 0 n = m  

Now we expand the experimental curve V(h) for the 
(P2n(h) according to its accuracy, thus determining the 
truncation index N: 

N 
v ( h ) =  27 v~.v~.(h); 

n = 0  

(17) 

comparison of expansion coefficients yields a recur- 
rence formula for the gzn: 

V2N 

g z , v -  TzN, zN ' 
1 U 

g 2 .  - - -  ( v 2 n -  27 g 2 m T ~ m , ~ . ) ,  (18) 
T2n,2n m = n + l  

n = N -  1, N -  2 , . . . ,  0. This method has the advantage 
of being adapted to the particular convolution problem 
by constructing a set of orthonormal functions which 
contain the special slit-width weighting distribution, 
provided that the postulated Hermite expansion of the 
solution is still reasonable. The set of g2n can now be 
used to perform slit height correction if necessary. 

In the same manner the equation for this effect due 
to polychromaticity can be solved. Inserting a postu- 
lated series expansion of the scattering function, 

N 
S(x)= 27 S2n~2n(x) (19) 

n = 0  

into equation (2), and orthonormalizing the resulting 
Hermite functions distorted by z(k), we again arrive 
at a recurrence relation for the solution coefficients: 

J2N 
& l v -  

D2N,  2N 

1 N 
S2n - - -  ( j 2 n -  2 S2mD2m,2n), (20)  

D2n, 2n re=n+ 1 

n = N - 1 ,  N - 2 ,  . . . ,  0. The triangular matrix D is 
analogous to T in (15). The jzn'S are the coefficients 
of the experimental or collimation-corrected distribu- 
tion ~-(h) expanded for orthonormal functions estab- 
lished by Schmidt's method. The truncation index N 
is determined by the statistics of ~-(h). 

On expanding a Gaussian function exp (-aEx2/2) 
in terms of Hermite functions, all coefficients will 
vanish, with the exception of the zero order coefficient, 
if a = 1. Thus the Hermite polynomial expansion of any 
Gaussian-like function will converge rapidly, after 
suitable transformation of the x-scale. Since in small 
angle scattering Guinier's approximation of scattering 
distributions has proved to be a useful representation 
we can improve the series convergence of Hermite ex- 
pansions by taking a Gaussian shape as the first ap- 
proximation. In order to adapt the scale of any dis- 
tribution f ( x )  we use the variance 

If( x ) .  x ~ a x  

lf( x)dx 
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as a representative. Transforming x* =x/a~, we find 
a~. = 1 equivalent to the variance of the zero order 
Hermite function. In slit height correction, rapid con- 
vergence of the solution series o~-(h) is simply achieved 
by a rapidly convergent expansion of G(h) after trans- 
forming the h-scale according to a 2 ~  1. In order to 
optimize series convergence in slit width or wavelength 
distortion correction, we use moment relations of the 
respective integral equations. Transforming the h-scale 
by h*= h/(a2v - a2) t/2, we adapt the variance of the slit 
width solution function G(h) to that of ~'0(h), thus 
choosing an appropriate range of h for the Hermite 
representation (which is also adjusted for simultaneous 
slit-height correction if necessary). Using the moment 
relation of (2) for the variances of o~(h) and S(x), 
which is easily established, we adapt the x-scale to 
g0(x) by transforming h*=h .  (k-3)l/Z/((k-1)c72~') 1/2 
where 

fo ° ( k -m)= . z(k)dk . 

By transformation of the h-scale the correction for- 
malism is not changed. All scaling factors are calcu- 
lated from experimental data. 

Usually the statistical errors of scattered intensity 
measurements cannot be neglected. It is therefore im- 
portant to consider carefully the propagation of errors 
during the process of resolution error correction. Since 
the Hermite function methods reduce to a simple re- 
currence formalism, error propagation can be discussed 
in a straightforward manner; the recurrence relations 
(11), (18) or (20) are used if the mean square errors 
of the g2n, V2n or j2n respectively are known, while 
statistical errors in the weighting distributions are neg- 
lected (Hossfeld, 1967). Since expanding for ortho- 
normal functions is equivalent to curve fitting by the 
method of least squares we are able to apply this well 
known formalism (Linnik, 1961) to calculate the mean 
square errors of gzn, /)2/7, o r  Jzn. 

However, using certain properties of orthonormal 
functions, and assuming statistical independence of the 
data, we can estimate the (co)variances of expansion 
coefficients in a direct way. Following Porteus (1962), 
and postulating that the sampling-point spacing of any 
experimental distribution, f (x) ,  to be expanded be 
much smaller than the distance between the narrowest 
zeros of the highest-index orthonormal function used, 
the (co)variances of the general expansion coefficients 
q2n are given by 

(Aq2nAqzra) = f ~-oo(A2f(X)) " X2n(X)X2m(x)dx' (22) 

where y2n(x) are the orthonormal functions in question 
and (A2f(x)) represents the estimated mean square 
error off(x). If (A2f(x)) can be assumed to vary slowly 
with x compared with Z2nZ2m the right hand side of 
(22) will vanish for n:/:m because of orthogonality. 
Thus only the variances (A2q2n) need to be taken into 
account for error propagation. 

Numerical results 

For the purpose of numerical tests and application to 
experimental data, three Fortran programs have been 
established from the correction methods developed 
here on the basis of Hermite functions. In order to 
demonstrate the efficiency of the methods, various 
types of scattering functions were smeared out by 
typical weighting functions according to the integral 
equations (2), (3), and (4). The distorted curves were 
calculated where possible by analytical quadrature, 
but otherwise numerically. The correction methods of 
this paper were applied to these distributions, and the 
resulting shapes were compared with the exact scat- 
tering functions. 

In Fig. l(a)-(c) three examples are shown of slit 
height correction performed with rectangular slit height 
functions ill(u) of various heights. Fig. l(a) exhibits a 
peak-shaped scattering function o~-(h) represented by 
a superposition of 6 Hermite functions (n--0 to 5) 
strongly distorted by the finite slit height. In the log- 
arithmic scale over several orders of magnitude the 
agreement of the theoretical curve and the numerical 
values of the corrected function indicated by crosses 
becomes evident. In Fig. 1 (b) the exact scattering func- 
tion of a sphere (Beeman, Kaesberg, Anderegg & 
Webb, 1957) is compared with the numerical results 
obtained from corrections of two differently distorted 
functions G(h). From these examples the influence of 
the sampling interval Ah of the input data on the 
quality of the slit height correction can be seen. Al- 
though the curve G2(h) had been smeared by a slit 
twice as high as for Gl(h), the minima of the solution 
function are much better resolved because of a higher 
density of sampling points. The deviations on the right 
hand side of Fig. 1 (b) are almost totally caused by the 
information loss due to the finite 'measuring range' 
used (Hossfeld & Maier, 1967). However, slit height 
correction by Hermite functions has yielded very good 
agreement with the theoretically expected curve within 
a range of at least six maxima and covering about six 
orders of magnitude. Fig. 1 (c) shows the potentialities 
of the slit height correction method in the case of the 
slowly decreasing function (sin ah/ah) 2. Because of its 
strong wings this function suffers appreciable informa- 
tion loss by the slit height effect. Nevertheless, per- 
forming the resolution correction by the Hermite func- 
tion method yields good resolution of the minima and 
maxima up to the end of the h-range used, where in- 
formation loss consequent on the finite range again 
becomes important. 

For a first application of this correction method to 
experimental small angle scattering data it seemed rea- 
sonable to choose results taken with strictly mono- 
chromatic radiation and negligible slit width. Accord- 
ingly we used as G(h) the X-ray small angle scattering 
of a latex, observed by Bonse & Hart (1965, 1966) with 
a high-resolution diffractometer. Two results of the slit 
height correction procedure with assumed rectangular 



weighting functions of various heights are shown in 
Fig. 2(a). The mean value of the diameter of the latex 
spheres, D =0.254 _+ 0.014/~m, obtained from the min- 
ima and maxima of the corrected curves exactly agrees 
with that value determined by Bonse & Hart after 
comparing the experimental data with artificially dis- 
torted scattering functions for spheres, o~2(h ) seems to 
be slightly over-corrected, since its minima become 
appreciably negative with increasing h. Compared to 
the scattering function of spheres in Fig. 1 (b) the data 
of Fig. 2(a) show that the latex sample exhibits an ap- 

10 3 

preciable 'interparticle effect'. In Fig. 2(b) the theoret- 
ical self-correlation function of a sphere is compared 
with the correlation function g(r) calculated by Fourier 
transformation of o~l(h). The peak related to next 
neighbours which arises in the region r /R=3 is due 
to the interparticle effect. 

In Fig. 3 two examples of slit width correction per- 
formed with a Fortran program of the Hermite func- 
tion method are shown. In Fig. 3(a) a narrow Gaussian 
function substantially broadened by a Gaussian slit 
width function is subjected to numerical unfolding. 

10 2 
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10 ° 
0 1"0 2'0 3"0 4"0 5'0 6"0 

h o 
(a) 

FRIEDEL HOSSFELD 647 

10-t 

10-2 

10-3 

10-4 

10-5 

10-6 
0 1 1"0 

--Jheo (h) 
' ~  G2(h) 

\t ~1-Gl(h) 

2"o 3"o 4"o 510 6:o 
h '  ~ 

(b) 

10° " ~ J  (h) 

~ t h e o r  

10-1 ~ G(h) 

10 -2 f~'x,I 

10 -3 ~, , , ~  
1"0 2"0 3"0 4"0 

h ~ 
(c) 

Fig. 1. Slit height correction by the Hermite function method: (a) Jtheor(h) = h 10 exp ( -  h2/2), i n ( u )  = u -1 z~ , /u /<_ UM, UM = 6 ; (b) 
J theo r (h )=9  (sin x - x  • c o s x ) 2 / x  6, x = T z h ,  i t t ( U ) = U - I M ,  /U/<_UM; × × × U M = 3 ,  d h = 0 " 1 5 ;  © © © u M = 6 ,  d h = 0 " 1 0 ;  (c) Jtheor(h) 
= (sin rch/rch) 2, i l l (u)  = u -1  M, / u / <  UM, UM = 6. 

A C 24A - 5 
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The numerical values of the corrected scattering func- 
tion, indicated by crosses, agree very well with the 10" 
theoretically expected curve to well below 10 -4 . The 
results do not exhibit any influence of series truncation 
or finite h-range. In Fig. 3(b) the minimum of the un- 
distorted c u r v e  Gtlaeor(h) is almost totally smeared out 
by the slit width effect resulting from a Gaussian 
weighting function; nevertheless the numerical results I0-', 

for the corrected function, indicated by crosses, are 
again satisfactory. Over the whole range the agreement 
with the theoretical function is better than can be seen 
with the logarithmic scale used. 

For numerical experiments on the effect of poly- lO-2 
chromaticity, scattering functions of the type S(x)= 
C(x/b)  TM . exp ( -x2/b  2) were smeared out according to 
(3) by use of weighting functions z(k)  having a general- 
ized Maxwellian shape z ( k ) = Z o  . k m-2 . exp ( - A 2 k 2 ) .  
This process yielded wavelength-distorted curves of the 10-3 
form: 

A b ]  
' 

10-4t 
0 

We applied the Hermite function method for various 
n, m, b, and A. In order to avoid systematic errors 
during orthonormalization it is necessary to take a 
sufficiently large h-range. To diminish truncation ef- 1.o 
fects it is preferable to interpolate linearly the experi- 
mental z(k)  and to perform piecewise analytical quadra- 0.8 
tures instead of numerical integrations for orthonor- 
realizing. In Fig. 4(a), the small deviations on the wing 0.6 
of the solution S(x) are truncation effects arising from 
the orthonormalizafion procedure, but the agreement o.4 
with the theoretical shape is still very good in the 
significant region. Fig.4(b) again demonstrates the 
strong distortion of the scattering function for increas- o.2 
ing h. The numerical results agree with the sharp peak 
shape of the true curve, emphasizing the efficiency of 
the Hermite function method. 

For wavelength corrections and slit width correc- 
tions the distorted distributions were represented by 
superpositions of 15 orthonormal functions, estab- o., 
lished by Sckmidt's method• For slit height correc- 
tions 20 Hermite functions were used for the expansion o.3 
of G(h). The test runs shown in Figs. 1-4 were per- 
formed with the IBM 7090/1410 of the I.I.M. of the 0.2 
University of Bonn. Of course, the execution time 
strongly depends upon the number of orthonormal o.1 
functions, ranging from a few seconds to some minutes 
for N about 20 using the IBM 7090. c 

o 

Conclusions 

~(h) 

The representation of scattering functions in small 
angle scattering by series of Hermite functions allows 
for a closed treatment of the geometric resolution 
errors caused by the finite height and width of collima- 

0"5 1'0 "10 -2 1"5 
h [ A  -1 ] . 

(a) 

ere (r) 

~ (h) [exper.] 

1:0 2"0 3:0 

r %ere' ' 2 

1"0 2"0 3"0 
r / R .  -'- 

(b) 

Fig. 2. X-ray small angle scattering of  latex (after Bonse & 
Hart) :  (a) slit height corrections with in(u) = c o n s t , / u / <  u,u. 
Jl(h) :uM = 1-63 × 10-2/~-1 ; J2(h): uM = 2.45 x 10-2/~-1 ; (b) 
correlation function for a sphere, and g(r) calculated f rom 
Jl(h) with an interparticle effect present. 
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tion slits, and of the distortion effect caused by non- 
monochromatic radiation. These smearing effects can 
be corrected in a general and quantitative manner that 
is properly matched to the accuracy of the measure- 
ments. The methods lead to simple recurrence for- 
mulae, thus reducing calculations to a coefficient 
algebra easy to manipulate with digital computers. 
Error propagation may be discussed within the frame- 
work of the formalism of orthonormal functions. 

The experimental scattering distributions are repre- 
sented by discrete expansion coefficients in proper 
accord with the functional character of these distribu- 
tions. Therefore this Hermite function formalism 
might prove useful in problems beyond the mere cor- 

10" 

10-1 

' 6 n u m ( h ) ~  \ \ 

i 

! 

I 

0 120 2"0 3'0 

(a) 

10  ° , 

4~0 5~0 
h • 

10-~ 

10-2. 

10-? 

10--4 
0 1"0 2"0 3"0 4"0 5"0 6"0 

h • 
(b) 

Fig.3. Slit width correction with weighting function i~(h)= 
exp ( -  h2): (a) Gt~eor(h) = exp ( - h2/0.44); (b) Gtheor(h) = (:~ 
+ h 2) exp ( -  h2/2). 

rection of errors, such as problems of optimizing small 
angle scattering experiments (Monahan & Langsdorf, 
1965), and lead to a valuable means of information 
processing in this field. 
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A major problem of quantitative powder diffraction analysis is the tendency of many samples to be 
preferentially oriented. The approach proposed here is to work with easily prepared, preferentially 
oriented fiat samples, whose orientation can be characterized in quantitative terms. Once the orienta- 
tion is known, the observed intensities may be corrected for the effects of orientation. Although the 
approach is general, correction factors are developed and experimental results are presented only for 
the most common mode of preferred orientation, as exhibited by plate-like particles. 

Introduction 

Any sample assemblage of morphologically anisotropic 
powder-sized particles tends to be preferentially ori- 
ented. To overcome the effects of preferred orientation, 
several techniques of sample preparation have been 
worked out which are supposed to result in randomly 
oriented samples (Bystr6m-Asklund, 1966; Niskanen, 
1964). No technique can guarantee ideally random 
orientation, and it is the uncertainty regarding the 
degree of randomness achieved which lowers the value 
of these techniques. Other techniques are attempts to 
derive the intensity of an equivalent, randomly oriented 
sample from the diffraction data of the preferentially 
oriented sample. Randomizing diffraction data from 
polymers showing certain types of preferred orienta- 
tion has been attempted by employing specialized 
sample holders that spin the specimen, by weighting 
each quantum of the line profile by a certain function, 
and by integrating over the total angle intercepted 
(Desper & Stein, 1967). The tedium of the computa- 
tional work can be almost eliminated by the use of an 
electronic device which combines the output of a pulse 
height analyzer with that of a function generator before 
integrating the modified signal (Ruland & Dewael- 
heyns, 1967). The aim of these techniques is to obtain 

meaningful intensity readings by averaging the diffrac- 
tion data. The approach suggested here is to prepare 
preferentially oriented specimens and to determine the 
specific distribution function which characterizes the 
orientation. The effects of preferred orientation may 
then be cancelled out by correcting the observed inten- 
sities for the various reflections. 

Wherever there is a finite probability that particles 
will assume a certain position, a normal distribution 
must result. In practice, the conditions for normal dis- 
tributions are met by any aggregate of morphologically 
anisotropic particles whose tendency toward preferred 
orientation has not been interfered with. Therefore, the 
preferred orientation of powdered samples is best dealt 
with in terms of the normal distribution of radii of 
probability. We may characterize the orientation of a 
crystallite by the position of the perpendicular to a 
given crystallographic plane. The lengths of the radii 
of probability, drawn from a common origin, are pro- 
portional to the number of particles in the given direc- 
tion, and therefore are also related to the observed 
intensities. The spatial distribution of intensities repre- 
senting preferred orientation of platelets, for example, 
is cylindrically symmetrical and has a plane of sym- 
metry perpendicular to the major direction or the 
longest radius. In this case, the distribution function 


